Schedule (1)

SI Base Units

Quantity: time	Quantity: time	
Unit: The second	Unit: The second	
Symbol: s	Symbol: s	
It is defined by taking the fixed numerical	The second is defined by taking a	
value of the caesium frequency $\Delta \nu_{\text{Cs,}}$ the	fixed numerical value of 9 192 631	
unperturbed ground-state hyperfine	770 Hz. The unperturbed ground-	
transition frequency of the caesium 133	state hyperfine transition frequency of	
atom, to be 9 192 631 770 when expressed	the caesium 133 atom $\Delta \nu_{\text{Cs}}$, where	
in the unit Hz, which is equal to s ⁻¹ .	$Hz = s^{-1}$.	
This definition implies the exact relation	This definition implies the following	
	exact relation	
$\Delta v_{cs} = 9 192 631 770 Hz.$	$\Delta v_{cs,=}$ 9 192 631 770 Hz.	
$\Delta V_{(S,-)} = 9.192.031770112.$	ΔV_{CS} , $= 3.132.031770112.$	
Inverting this relation gives an expression	Inverting this relation gives an	
·		
Inverting this relation gives an expression	Inverting this relation gives an	
Inverting this relation gives an expression for the unit second in terms of the defining constant $\Delta\nu_{\text{Cs,}}$:	Inverting this relation gives an expression for the unit second in terms of the defining constant $Cs\Delta v$,	
Inverting this relation gives an expression for the unit second in terms of the defining constant $\Delta\nu_{\text{Cs,}}$:	Inverting this relation gives an expression for the unit second in terms of the defining constant $Cs\Delta v_{ij}$	
Inverting this relation gives an expression for the unit second in terms of the defining constant $\Delta\nu_{Cs,}$: $1\text{Hz} = \frac{1}{9192}$ Or	Inverting this relation gives an expression for the unit second in terms of the defining constant CsΔv, ΔvCs 2 631 770 or	
Inverting this relation gives an expression for the unit second in terms of the defining constant $\Delta\nu_{Cs,}$: $1\text{Hz} = \frac{1}{9192}$ Or	Inverting this relation gives an expression for the unit second in terms of the defining constant $Cs\Delta v$, ΔvCs 2 631 770	
Inverting this relation gives an expression for the unit second in terms of the defining constant $\Delta\nu_{Cs,}$: $1\text{Hz} = \frac{1}{9192}$ Or	Inverting this relation gives an expression for the unit second in terms of the defining constant CsΔv, ΔvCs 2 631 770 or	
Inverting this relation gives an expression for the unit second in terms of the defining constant $\Delta \nu_{Cs,}$: $1 \text{Hz} = \frac{4}{9 192}$ Or $1 \text{Hz} = \frac{9 192}{4}$	Inverting this relation gives an expression for the unit second in terms of the defining constant CsΔν, ΔνCs 2 631 770 or 2 631 770 ΔνCs	
Inverting this relation gives an expression for the unit second in terms of the defining constant $\Delta \nu_{\text{Cs,}}$: $1\text{Hz} = \frac{1}{9192}$ Or $1\text{Hz} = \frac{9192}{2}$ The effect of this definition is that the	Inverting this relation gives an expression for the unit second in terms of the defining constant Cs\Delta v, \[\Delta v \ Cs \\ 2 631 770 \\ \text{ or } \\ 2 631 770 \\ \Delta v \ Cs \\ \The effect of this definition is that the	

second is equal to the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the unperturbed ground state of the ¹³³Cs atom.

The effect of this definition is that the second is equal to the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the unperturbed ground state of the 133 Cs atom.

The reference to an unperturbed atom is intended to make it clear that the definition of the SI second is based on an isolated caesium atom that is unperturbed by any external field, such as ambient black-body radiation.

The reference to an unperturbed atom is intended to make it clear that the definition of the SI second is based on an isolated caesium atom that is unperturbed by any external field, such as ambient black-body radiation.

Quantity: length	Quantity: length	
Unit: The metre	Unit: The metre	
Symbol: M	Symbol: M	
It is defined by taking the fixed numerical	It is defined by taking the fixed	
value of the speed of light in vacuum c to	numerical value of the speed of light	
be 299 792 458 when expressed in the unit	in vacuum c to be 299 792 458 (299	
m s ⁻¹ , where the second is defined in terms	$792458 \mathrm{m s^{-1}}$) where the second is	
of $\Delta \nu_{cs}$	defined in terms of $\Delta\nu_{\text{ Cs}}$	
This definition implies the exact relation	This definition implies the exact	
	relation	
c=299 792 458 m s ⁻¹	c=299 792 458 m s ⁻¹	
Inverting this relation gives an expression	Inverting this relation gives an	
for the unit second in terms of the defining	expression for the unit metre in terms	
constant $\Delta \nu Cs$:	of the defining constants c and $\Delta \nu$ CS:	
$1 \text{ m} = \left(\frac{C}{299\ 792\ 458}\right)^{S}$		
$= \frac{9\ 192\ 631\ 770}{299\ 792\ 458} \frac{C}{\Delta \nu Cs}$		
$\approx 30.633319 \frac{C}{\Delta vCs}$		

The effect of this definition is that one metre is the length of the path travelled by light in vacuum during a time interval with duration of 1/299 792 458 of a second.

The effect of this definition is that one metre is the length of the path travelled by light in vacuum during a time interval with duration of 1/299 792 458 of a second.

Quantity: Mass

Unit: The kilogram

Symbol: kg

Quantity: Mass

Unit: The kilogram

Symbol: kg

It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 \times 10⁻³⁴ when expressed in the unit J s, which is equal to kg m² s⁻¹, where the metre and the second are defined in terms of c and $\Delta \nu_{Cs}$

This definition implies the exact relation

 $h=6.626\,070\,15\times10^{-34}\,kg\,m^2\,s^{-1}$ Inverting this relation gives an exact

expression for the kilogram in terms of the three defining constants h, $\Delta \nu_{\text{Cs}}$ and c

It is defined by taking the fixed numerical value of the Planck constant h to be (6.626 070 15 \times 10⁻³⁴), where (J s = kg m² s⁻¹), where the metre and the second are defined in terms of c and $\Delta\nu_{Cs}$

This definition implies the exact relation

h= $6.626\,070\,15\times10^{-34}\,kg\,m^2\,s^{-1}$ Inverting this relation gives an expression for the unit kilograms in terms of the defining constants h, and

 $\Delta \nu$ CS and c

1 Kg =
$$\left(\frac{H}{6.626.070.15 \times 10^{-34}}\right) m.^{-2}$$
 S

Which is equal to
$$1 \text{ Kg} = \frac{(299\,792\,458)^2}{(6.626\,070\,15\times10^{-34})(9\,192\,631\,770)} \frac{h\,\Delta v_{cs}}{C^2}$$

$$\approx 1.475\,5214\times10^{40}\,\frac{h\,\Delta v_{cs}}{C^2}$$

The effect of this definition is to define the unit kg m² s⁻¹ (the unit of both the physical quantities action and angular momentum). Together with the definitions of the second and the metre this leads to a definition of the unit of mass expressed in terms of the Planck constant h.

The effect of this definition is to define the unit ($J s = kg m^2 s^{-1}$) (The unit of physical quantities and angular momentum), which, together with the definitions of the second and the metre this leads to a definition of the unit of mass expressed in terms of the Planck constant h.

Quantity: electric current Quantity: electric current

Unit: The ampere Unit: The ampere

Symbol: A Symbol: A

It is defined by taking the fixed numerical value of the elementary charge e to be 1.602 176 634 \times $10^{\text{-}19}$ when expressed in the unit C, which is equal to A s, where the second is defined in terms of $\Delta\nu_{\text{Cs}}$

This definition implies the exact relation

It is defined by taking the fixed numerical value of the elementary charge e to be (1.602 176 634 \times 10⁻¹⁹) c. where C=A S, where the second is defined in terms of $\Delta\nu_{\text{Cs}}$ This definition implies the exact

relation

 $e=1.602\ 176\ 634\ x\ 10^{-19}\ A\ s$

Inverting this relation gives an exact expression for the unit ampere in terms of the defining constants e and $\Delta \nu_{cs}$:

e=1.602 176 634 x 10^{-19} A s Inverting this relation gives an expression for the unit ampere in terms of the defining constants e and Δv CS:

$$1 A = \left(\frac{e}{1.602 \ 176 \ 634 \ \times 10^{-19}}\right) s^{-1}$$

Which is equal to

Which is equal to

$$1 A = \frac{1}{(9 \ 192 \ 631 \ 770)(1.602 \ 176 \ 634 \ \times 10^{-19})} \Delta v_{cs} e$$

$$\approx 6.789.687 \times 10^8 \Delta v_{cs} e$$

The effect of this definition is that one ampere is the electric current corresponding to the flow of $1/(1.602\ 176\ 634\ \times\ 10^{-19})$ elementary charges per second.

The effect of this definition is that one ampere is the electric current corresponding to the flow of $1/(1.602 \cdot 176 \cdot 634 \times 10^{-19})$ elementary charges per second.

Quantity: thermodynamic temperature

Quantity: thermodynamic temperature

Unit: The kelvin

Unit: The kelvin

Symbol: K

Symbol: K

It is defined by taking the fixed numerical value of the Boltzmann constant k to be 1.380 649 \times ¹⁰⁻²³ when expressed in the unit J K⁻¹, which is equal to kg m² s⁻² K⁻¹,

It is defined by taking the fixed numerical value of the Boltzmann constant k to be 1.380 649 \times 10⁻²³, where J K⁻¹ = Kg m² s⁻² K⁻¹, where the

where the kilogram, metre and second are defined in terms of h, c and Δv Cs This definition implies the exact relation

k=1.380 649 × 10⁻²³ kg m² s⁻² K⁻¹ Inverting this relation gives an exact expression for the kelvin in terms of the defining constants k, h and $\Delta\nu_{Cs}$

kilogram, metre and second are defined in terms of h, c and $\Delta \nu_{Cs}$ This definition implies the exact relation $k=1.380~649\times 10^{-23}~kg~m^2~s^{-2}~K^{-1}$ Inverting this relation gives an expression for the unit kelvin in terms of the defining constants k, h and

 $1 K = \left(\frac{1.380 649 \times 10^{-23}}{k}\right) kg m^2 s^{-2}$

ΛνCS:

Which is equal to

Which is equal to

$$1 K = \frac{1.380 649 \times 10^{-23}}{(6.626 070 15 \times 10^{-34})(9 192 631 770)} \frac{\Delta v_{cs} h}{k}$$

$$\approx 2.266 6653 \frac{\Delta v_{cs} h}{k}$$

The effect of this definition is that one kelvin is equal to the change of thermodynamic temperature that results in a change of thermal energy kt by 1.380649×10^{-23} j.

The effect of this definition is that one kelvin is equal to the change of thermodynamic temperature that results in a change of thermal energy kt by $1.380\,649\times10^{-23}$

Quantity: amount of substance	Quantity: amount of substance
Unit: The mole	Unit: The mole
Symbol: mol	Symbol: mol

One mole contains exactly 6.02 214 076 × 10²³ elementary entities. This number is the fixed numerical value of the Avogadro constant, N_A, when expressed in the unit mol⁻¹ and is called the Avogadro number. The amount of substance, symbol n, of a system is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles.

One mole contains exactly (6.02 214 076 X 10²³) elementary entities, this number is the fixed numerical value of the Avogadro constant, N_A, when expressed in the unit mol⁻¹ (the inverse of the mole), and is called the Avogadro number. The amount of substance, symbol n, of a system is a measure of the number of specified elementary entities. is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles.

This definition implies the exact relation

This definition implies the exact relation

 N_A = 6.022 140 76 × 10²³ mol⁻¹ Inverting this relation gives an exact expression for the mole in terms of the defining constant N_A : N_A = 6.022 140 76 × 10²³ mol⁻¹ Inverting this relation gives an exact expression for the mole in terms of the defining constant N_A

$$1 \ mol = \frac{(6.022 \ 140 \ 76 \ \times 10^{23})}{N_A}$$

The effect of this definition is that the mole is the amount of substance of a system that contains $6.02\ 214\ 076\times 10^{23}$ elementary entities.

The effect of this definition is that the mole is the amount of substance of a system that contains (6.02 214 076 \times 10²³) elementary entities.

Quantity: luminous intensity	Quantity: luminous intensity
Unit: The candela	Unit: The candela
Symbol: cd	Symbol: cd
is the SI unit of luminous intensity in a	It is defined by taking the fixed
given direction. It is defined by taking the	numerical value of the luminous
fixed numerical value of the luminous	efficacy (K_{cd}) of (683 lm W^{-1}) for a
efficacy of monochromatic radiation of	monochromatic beam with a
frequency 540×10^{12} Hz, K_{cd} , to be 683	frequency 540×10^{12} Hz, where
when expressed in the unit Im W-1, which	Im $W^{-1} = cd \text{ sr } W^1 = cd \text{ sr kg }^1 \text{m }^2 \text{s}^3$
is equal to cd sr W ⁻¹ , or cd sr kg ¹ m ² s ³ ,	
where the kilogram, metre and second are	the kilogram, metre and second are
defined in terms of h, cand Δu_{Cs}	defined in terms of -h, c and $\Delta\nu_{\text{Cs}}$
This definition implies the exact relation	This definition implies the exact
	relation
$K_{cd} = 683 \text{ cd sr kg}^{1} \text{m}^{2} \text{s}^{3}$	$K_{cd} = 683 \text{ cd sr kg}^{1} \text{m}^{2} \text{s}^{3}$
for monochromatic radiation of frequency	for monochromatic radiation of
$\nu = 540 \times 10^{12}$ Hz. Inverting this relation	frequency
gives an exact expression for the candela in	$V = 540 \times 10^{12} \text{ Hz}$

terms of the defining constants K_{cd} hand $\Delta\nu_{\text{Cs}}$

Inverting this relation gives an exact expression for the candela in terms of the defining constants K_{cd} and h and $\Delta\nu_{Cs}$

$$1 \ cd = \left(\frac{k_{cd}}{683}\right) kg \ m^2 s^{-3} sr^{-1}$$

Which is equal to

Which is equal to

1 *cd*

$$= \frac{1}{(6.626\ 070\ 15\ \times\ 10^{-34})(9\ 192\ 631\ 770)^2\ 683} (\Delta v_{cs})^2 h\ K_{cd}$$

$$\approx 2.6148305 \times 10^{10} (\Delta v_{cs})^2 h K_{cd}$$

The effect of this definition is that one candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} Hz and has a radiant intensity in that direction of (1/683) W sr⁻¹.

The effect of this definition is that one candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency

540 X 10¹² and has a radiant intensity in that direction of (1/683) W sr⁻¹

Table (2)
Examples of Some Derived Units Based on the Use of Base Units Only

Symbol		Unit		Quantity	
m ²	m^2	Square metre	Square metre	Area	Area
m ³	m^3	Cubic metre	Cubic meters	Volume	Volume
rad/s	1./	Radian per	Radian per	Angular	Angular
rau/S	rad/s	second	second	velocity	velocity
		Radian per	Radian per	Angular	Angular
rad/s ²	rad/s^2	second	second	acceleration	acceleration
		squared	squared	acceleration	acceleration
m/s	m/s	Metre per	Metre per	Velocity	Volocity
111/5	111/5	second	second	velocity	Velocity
		meter per	Metre per		
m/s^2	m/s ²	second	second	Acceleration	Acceleration
		squared	squared		
kg/m	kg/m	Kilogram per	Kilogram per	Lineic mass,	Lineic mass,
kg/III	kg/III	metre	metre	linear density	linear density
		Kilogram per	Kilogram per	Areic mass,	Areic mass,
kg/m ²	kg/m^2				surface
		square metre	square metre	surface density	density
kg/m³	kg/m³	Kilogram per	Kilogram per	Density (mass	Density (mass
kg/III	kg/m²	cubic metre	cubic metre	density)	density)
		Metre	Metre squared	Kinematic	Kinematic
m^2/s	m ² /s	squared per	•		
		second	per second	viscosity	viscosity

m^3/s	3/-	Cubic metre	Cubic metre	Volume flow	Volume flow
m^3/s m^3/s		per second	per second	rate	rate
kg/s	kg/s	Kilogram per	Kilogram per	Mass flow rate	Mass flow rate
kg/s	kg/s	second	second		
Δ	A A ampere amp	amporo	Magnetomotive	Magnetomotive	
Λ		ampere	ampere	force	force
A/m	A/m	Ampere per	Ampere per	Magnetic field	Magnetic field
77111 77111		metre	metre	strength	strength
Cd/m ²	cd/m²	Candela per	Candela per	Luminance	Luminance
Cu/III	Cu/III	square metre	square metre	Lummance	Lummance
1/m	1/m	1 per metre	1 per meter	Wave number	Wave number

Table (3)
Derived Units with Special Names and Symbols

1	Quantity: Plane angle
	Unit: Radian
	Unit Symbol: rad
	A radian is the unit of plane angle, defined as the angle between two radii of a
	circle that intersect an arc whose length is equal to the radius of the circle.
2	Quantity: Solid angle
	Unit: Steradian
	Unit symbol: sr
	A steradian is the unit of solid angle, defined as the angle with its vertex at the
	centre of a sphere that intercepts an area on the surface of the sphere equal to
	that of a square whose side length is equal to the sphere radius.
3	Quantity: Frequency
	Unit: hertz
	Unit symbol: Hz
	Hertz is a unit of frequency, defined as the number of cycles of a periodic
	phenomenon occurring per second.
	Frequency is the number of cycles of a periodic phenomenon occurring in one
	second.
4	Quantity: Force
	Unit: Newton
	Unit Symbol: N
	A Newton is the force that, when applied to a stationary mass of 1 kilogram,
	causes it to accelerate at a rate of 1 metre per second squared.

_	
5	Quantity: Pressure, stress
	Unit: Pascal
	Unit symbol: Pa
	A Pascal is a unit of pressure defined as the amount of uniform pressure that,
	when applied to a flat surface of 1 square meter, exerts a total force of 1
	Newton perpendicular to that surface.
	It is also the uniform stress that, when applied to a flat surface with an area of 1
	square meter, results in a total force of 1 Newton acting on that surface.
6	Quantity: Work, energy, quantity of heat
	Unit: joule
	Unit Symbol: J (1)
	A Joule is the work done when a force of 1 Newton moves an object a distance
	of 1 meter in the direction of the force.
7	Quantity: Energy flow rate, heat flow rate power
	Unit: watt
	Unit Symbol: W
	A Watt is the power that represents the rate at which 1 Joule of energy is
	produced or consumed per second.
8	Quantity: temperature, interval of temperature
	Unit: Degree Celsius
	Unit Symbol: °C (°)
	In addition to the thermodynamic temperature (K) expressed in Kelvin, the
	Celsius temperature (D) is also used, which is defined by the equation: $D = KH - I$
	273.15
	The unit "degree Celsius" is numerically equivalent to the unit "kelvin";
	however, "degree Celsius" is a specific name used instead of "kelvin."
	1

	Temperature differences or ranges can be expressed either in degrees Celsius or
	in kelvins.
9	Quantity: Quantity of electricity, electric charge
	Unit: coulomb
	Unit Symbol: C
	A Coulomb is the quantity of electric charge transferred in 1 second by a
	constant electric current of 1 Ampere.
10	Quantity: Electric potential, electromotive force
	Unit: volt
	Unit Symbol: V
	A Volt is the electrical potential difference between two points in a conducting
	wire carrying a constant current of 1 Ampere, where the power consumed
	between these points is 1 Watt.
11	Quantity: Electric resistance
	Unit: ohm
	Unit Symbol: Ω
	An Ohm is the electrical resistance between two points of a conductor when a
	constant current of 1 Ampere flows through it, and the electrical potential
	difference between these points is 1 Volt, provided that the conductor is not
	connected to any source of electromotive force.

12	Quantity: Conductance
	Unit: siemens
	Unit Symbol: S
	A Siemens is the unit of electrical conductivity of a conductor that has an
	electrical resistance of 1 Ohm.
	(Electrical conductivity is the inverse of electrical resistance.)
13	Quantity: Electric capacitance
	Unit: farad
	Unit Symbol: F
	A Farad is the capacitance of an electrical capacitor that, when charged with an
	electric charge of 1 Coulomb, exhibits an electrical potential difference of 1 Volt
	between its plates.
14	Quantity: inductance
	Unit: Henry
	Unit Symbol: H
	A Henry is the unit of electrical inductance of a closed circuit that generates an
	electromotive force of 1 Volt when the electric current flowing through it
	changes at a constant rate of 1 Ampere per second.
15	Quantity: Magnetic flux
	Unit: weber
	Unit Symbol: Wb
	A Weber is the unit of magnetic flux that, when passing through a single-turn
	electric circuit, generates an electromotive force of 1 volt as the flux decreases
	to zero at a constant rate over one second.

16	Quantity: Magnetic flux density, magnetic induction
	Unit: Tesla
	Unit Symbol: T (1)
	A Tesla is the unit of magnetic flux density/effect produced in an area of 1
	square metre by a uniform magnetic flux of 1 Weber perpendicular to the area.
17	Quantity: Catalytic activity
	Unit: katal
	Symbol: kat
	1. It is the catalytic activity that causes a reaction rate change of mole of
	reactant per second.
	2. When using the katal unit, it is recommended that the measured quantity be
	specified by linking it to the measurement method used to determine the
	reagent reaction.
	Note:
	According to Resolution No. 12 of the XXI General Conference on Weights and
	Measures in 1999, this derived unit can be used particularly in the fields of
	biochemistry and medical sciences.
18	Quantity: Luminous flux
	Unit: lumen
	Unit Symbol: Im
	A lumen is a measurement unit for luminous flux, defined as the amount of
	light emitted through a solid angle of 1 steradian from a light source with a
	uniform and precise radiation intensity of 1 candela.

19	Quantity: Illuminance
	Unit: lux
	Unit Symbol: lx
	Lux is a measurement unit for the illuminance of a surface, defined as the
	amount of luminous flux of 1 lumen uniformly distributed over an area of 1
	square metre
20	Quantity: Activity of a radioactive source
	Unit: Becquerel
	Unit Symbol: Bq
	A becquerel is a measurement unit for the activity of a radioactive source,
	representing one spontaneous nuclear transformation, disintegration, or
	change in the number of radionuclides in a given energy state per second.
	The activity of a radioactive source is measured by the number of spontaneous
	nuclear transformations or decays, or the change in the number of
	radionuclides in a given energy state, occurring within one second.
21	Quantity: Absorbed dose, kerma
	Unit: gray
	Unit Symbol: Gy
	A Gray is a unit of measurement for the absorbed dose of ionising radiation,
	defined as the amount of energy of 1 Joule deposited in a substance with a
	mass of 1 kilogram.
22	Quantity: Dose equivalent
	Unit: sievert
	Unit Symbol: Sv
	A Sievert is a unit of measurement for the dose equivalent in biological tissue
	with a mass of 1 kilogram, which receives an energy of 1 Joule from ionising
	radiation with a radiation impact factor of 1, under constant radiation flux.

In other words, a Sievert quantifies the biological damage caused to tissue due to exposure to ionising radiation and is equivalent to one Joule per kilogram. Note:

The dose equivalent is defined as the product of the absorbed dose at a specific point in biological tissue and the radiation effect factor at that point.

Table (4)
Examples of Derived Units Whose Names and Symbols Contain Derived
Units with Special Names and Symbols

Symbol		Unit		Qua	No.		
N.m	N.m	Newton	Newton	Moment of	Moment of	-1	
IN.III	[N,III]	metre	metre	force	force	-1	
Pa.s	Pa.s	Pascal	Pascal	Dynamic	Dynamic	-2	
rd.S	Pd.S	Second	second	viscosity	viscosity	-2	
J/K	J/K	Joule per	Joule per	Entropy	Entropy	-3	
J/ K	J/ K	kelvin	kelvin	Ппору	Еппору	-5	
		Joule per	Joule per	Specific heat	Specific heat		
l/(kg⋅K)	l/(kg⋅K)	kilogram	kilogram	capacity	capacity	-4	
		kelvin	kelvin	сарасну	сарасну		
W/(m.K)	W/(m.K)	Watt per	Watt per	Thermal	Thermal	-5	
VV/ (III.IC)	vv/ (III.K)	metre kelvin metre kelvin conductivity conductivity				-5	
ν/m	ν/m	Volt per	Volt per	Electric field	Electric field	-6	
V/111	V/111	meter	metre	strength	strength	-0	
W/sr	W/sr W/sr		Watt per	Radiant	Radiant		
VV/ SI	VV/ 51	steradian	steradian	intensity	intensity		
c/kg	c/kg	Coulomb	Coulomb	Exposure	Exposure	-8	
c/ kg	C/ Kg	per kilogram	per kilogram	LAPOSUIC	LAPOSUIE	-o 	

Table (5)
Examples of Some Dimensionless Derived Units

No.	Unit					
-1	Refractive index	Refractive index				
-2	Relative permeability	Relative permeability				
-3	Friction factor	Friction factor				
-4	Prandtl number	Prandtl number				

Since the unit of dimensionless derived quantities is simply 1, it is not expressed explicitly. However, some of these dimensionless units have special names and symbols to avoid confusion with other derived units. Examples include the radian (rad), the steradian (sr), and the neper (Np).

Table (6) SI Prefixes

Prefix S	Prefix Symbol		Name	Multiplication Factor	Value
					1000 000 000 000 000 000 000 000
Q	Q	quetta	quetta	10 ³⁰	000
R	R	ronna	ronna	10 ²⁷	1 000 000 000 000 000 000 000 000
Υ	Υ	Yotta	Yotta	10 ²⁴	1 000 000 000 000 000 000 000 000
Z	Z	Zeta	Zeta	10 ²¹	1 000 000 000 000 000 000 000
E	E	Exa	Exa	10 ¹⁸	1000 000 000 000 000 000
Р	Р	Peta	Peta	10 ¹⁵	100000000 000 000
Т	Т	Tera	Tera	10 ¹²	1000000000 000
G	G	Giga	Giga	10 ⁹	1000000000
М	М	mega	mega	10 ⁶	1000 000
К	К	Kilo	Kilo	10 ³	1000
Н	Н	hecto	hecto	10 ²	100
da	da	deca	deca	10 ¹	10
D	D	deci	deci	10 ¹	0.1
С	С	centi	centi	10 ⁻²	0.01
М	М	milli	milli	10 ⁻³	0.001
mc	μ	micro	micro	10 ⁻⁶	0.000 001
n	n	nano	nano	10 ⁻⁹	0.000 000 001
Р	р	Pico	pico	10 ⁻¹²	0.000 000 000 001
f	f	femto	femto	10 ⁻¹⁵	0.000 000 000 000 001
a	a	atto	atto	10 ⁻¹⁸	0.000 000 000 000 001
Z	z	zepto	Zepto	10 ⁻²¹	0.000 000 000 000 000 000 001

у	у	Yocto	Yocto	10 ⁻²⁴	0.000 000 000 000 000 000 000 001
r	R	ronto	Ronto	10 ⁻²⁷	0.000 000 000 000 000 000 000 000 001
q	Q	quecto	Quecto	10 ⁻³⁰	0.000 000 000 000 000 000 000 000 000

Table (7)
Acceptable Measurement Units Due to their Frequent Use

Quantity		Unit	Syı	mbol	Value in international units
	Minute	minute	min	Min	1 min = 60s
Time	hour	hour	Н	Н	1h = 60 min = 3600 s
	One day	day	d	d	1d = 24 h
	Degree	Degree (1)	0	0	1° = (π/180) rad
	Minute	minute	,	,	1'= (1/60)'= (π/10 800) rad
Plane Angle	Second	Second	"	"	$1'' - (1/60)'' = (\pi/648\ 000)$ rad
	gon	gon		gon	$1^{\circ} = (\pi/200) \text{ rad}$
	(degree)				
Capacity	litre	litre (²)	L	L,l	$1 I = 1 dm^3 = 10^{-3} m^3$
Mass	Metric	ton (³)	Ton	t	$1t = 10^3 \text{ kg}$
	ton				
Pressure	bar	bar	bar	bar	1 bar = 10 ⁵ Pa
Algorithmic	Nipper				
quantity	(7) and	neper	Np	Np	1Np = In e = 1
	(6)				
	(8) bel	bel	В	В	1 B = (1/2) In 10 (Np) = Ig 10 B

- 1. Standard no. 15031 recommends dividing the degree using decimals rather than using minutes and seconds.
- 2. This unit and symbol (1) were adopted by the CIPM in 1879. The alternative symbol (L) was adopted by the 16th General Conference on Weights and Measures in 1979, to remove confusion between the letter L and the number 1.
- 3. In some English-speaking countries this unit is called the "metric ton".
- 4. Example of algorithmic quantities: power level. power level

- 5. When using units of algorithmic quantities, the quantities being measured shall be stated.
- 6. Natural logarithms are used to obtain the algebraic value of quantities expressed in nipper.
- 7. The Niper unit is considered to be compatible with the SI but has not yet been adopted by the General Conference on Weights and Measures.
- 8. Decimal logarithm (logarithm to the base 10) is used to obtain the algebraic value of quantities expressed in Bel. The sub-multiple fraction decibel and the symbol (dB) are usually used.

Table (8)

Measurement Units Acceptable Outside the SI, which Shall Not be Used

Outside the Topics for Which They are Specified

No.	Measured Quantity	Unit	Symbol	Value in international units	Special-use
1.	Area	barn	В	$1 b = 10^{-28} m^2$	Atoms and Nuclear Physics
.2	Dynamic viscosity Dynamic viscosity	poise poise	Р	1 P = 0.1 Pa.s 1 cP = 10 ⁻³ Pa.s	
.3	Kinematic viscosity Kinematic viscosity	stokes stokes	St	1 St = 10^{-4} m ² /s 1 cSt = 10^{-6} m ² /s	
.4	Radioactive source activity	curie curie	Ci (9)	1 Ci = 37 GBq = 3.7 X 10 ¹⁰ Bq	
5.	Absorbed dose of radiation	rad	rad (10)	1 rad = 0.01 Gy = 10 ⁻² Gy	Radiation
6.	Exposure to radiation Exposure	rdntgen	R (11)	1 R = 0.258 mC/Kg = 2.58 X 10 ⁻⁴ C/Kg	
7.	Pressure	Millimetre of mercury	mmHg	1 mmHg = 133.322 Pa	Only in specialised areas, such as:

^{9.} This unit can be used with the prefixes for multiples and parts of units of measurement 12^{th} CGPM, 1964

- 10. This unit can be used with the prefixes for multiples and parts of units of measurement 12^{th} CGPM, 1964
- 11. This unit can be used with the prefixes for multiples and parts of units of measurement 12^{th} CGPM, 1964

		Millimetre		
		of mercury		
1 bar =100 kPa	har (12)	har		
= 10 ⁵ Pa	Dui (12)	Dai		
1 r = 2 πrad	r	cycle revolution	Plane Angle	8.
			strength of optical	
1 dionter = 1 m ⁻¹	diopter	diopter	systems	
. c.opic.			strength of optical	
			Systems	
1 carat = 2x10 ⁻⁴ kg		Metric carat		
8	Ct (13)	Metric	Mass	10.
200 mg		carat		
		Nautical		
1 nautical mile =	n mile	mile	Height	11.
1852 m	Titille	nautical	rieigiit	11,
		mile		
1 nautical mile per hour - (1852/3600) m/s	knot	knot knot	Velocity	12.
	= 10 ⁵ Pa 1 r = 2 πrad 1 diopter = 1 m ⁻¹ 1 carat = 2x10 ⁻⁴ kg = 200 mg 1 nautical mile = 1852 m 1 nautical mile per	bar (12) $1 r = 2 \pi rad$ 1 diopter = 1 m ⁻¹ 1 carat = $2x10^{-4}$ kg = $200 mg$ Ct (13) 1 nautical mile = 1852 m 1 nautical mile per hour - (1852/3600) knot	$1 \text{ bar} = 100 \text{ kPa}$ $= 10^5 \text{ Pa}$ $1 \text{ r} = 2 \pi \text{rad}$ $1 \text{ diopter} = 1 \text{ m}^{-1}$ $1 \text{ diopter} = 2 \pi \text{ liopter}$ $1 \text{ carat} = 2 \times 10^{-4} \text{ kg}$ $= 200 \text{ mg}$ $1 \text{ nautical mile} = 1852 \text{ m}$ $1 \text{ nautical mile per hour} = 100 \text{ knot knot knot}$	1 bar = 100 kPa bar (12) bar 1 r = 2 πrad r cycle revolution Plane Angle 1 diopter = 1 m ⁻¹ diopter diopter strength of optical systems strength of optical systems 1 carat = 2x10 ⁻⁴ kg = 200 mg Ct (13) Metric carat Metric carat Carat Carat Metric Carat Metric Carat Carat Metric Carat Carat Metric Carat Carat Carat Metric Carat Carat Carat Metric Carat Carat Carat Carat Carat Carat Metric Carat Carat Carat Carat Carat Carat Carat Carat Metric Carat Carat Carat Carat Carat Carat Metric Carat Cara

- 12. This unit can be used with the prefixes for multiples and parts of units of measurement 12th CGPM, 1964
- 13. The symbol ct has not been adopted by either the General Conference on Weights and Measures or ISO but is widely used.

Table (9)

Currently Accepted Units of Measurement Outside the International

System of Units which Shall Be Discontinued

Special-use	Value in international units	Symbol	Unit	Measured Quantity	No., Item (14)
Magnetic wavelength	1 A = 0.1 nm= 10-10 m 1 in = 2.54 cm = 2.54 X 10 ⁻² m	A IN	angstrom angstrom (15) inch inch	length	8.1
Timber trading	$1 \text{ st} = 1 \text{ m}^3$	St	Stere	Volume	8.2
	1 q = 100 kg = 10 ² Kg 1 lb= 453.592 g	Q Lb	quintal pound pound	Mass	B.3
	1 Kgf = 1 Kp = 9.806 65 N	Kgf kp	Kilogram- force kilopond	Force	d«
	1 atm = 101.325 kPa = 1.013 25X10 ⁵ Pa	Atm	Standard atmospher		
	1 at = 98.0665 kPa = 0.980.665 X 10 ⁵ Pa	At	technical atmospher	Pressure	8.5
Medical treatment	1Torr = 101.325/760 Pa	Torr	Torr	riessuie	6.5
	1 mH2O 9.806.65 kPa = 9.806.656 X 10³ Pa	mH2o	Metre of water		
	1kgf.m = 1kp.m = 9.806.65 (16)	k.gfm	Kilogram Force-Meter		8.6

14. According to the document of the International Organisation for Legal Metrology OIML
D2:1999:
15. According to reference (10), this unit can still be used.

			Kilogram force		
			metre		
			Kilopond		
			metre	Work, energy	
			Kilopond	and heat	
			metre		
		kp.m	calorie		
1	cal = 4.186.8	Cal	calorie		
1	L matric harcanavar		metric		
	I metric horsepower = 0.735.498.75 KW	att	horsepower	Power	8.7
	= 735.498.75 W	watt	(cheval-	rowei	0./
	- / ۵۵.73 VV		vapeur)		
1	$1 \text{ sb} = 10 \text{ K}_{cd}/\text{m}^2 = 10^4 \text{ cd/m}^2$	sb	stilb	Luminance	8.8

Table (10)
Units of Measurement Accepted in Specific Subjects and their Values
Determined by Practical Experience

Quantity	Unit	Sym	nbol	Definition	Value in international units
				It is the kinetic	
				energy that an	
				electron loses	
				when it travels	
	electronvolt			through a	1 eV = 1.602.177.33 X 10 ⁻¹⁹
Energy	electronvolt	eV	eV	vacuum and is	$\pm 0.000 000 49 \text{X} 10^{-19}$
	electronivoit			subjected to an	000 49 X 10 15
				electrical	
				potential	
				difference of 1	
				Volt.	
	Unified			It is a mass equal	
	atomic mass			to 1/12 of the	
Mass	unit	U	l.	mass of the free	1 u = $1.660.540.2 \times 10^{-27} \mathrm{kg}$
IVIdSS	Unified	U	1.	carbon atom in	$\pm 0.0000010 \times 10^{-27}\mathrm{kg}$
	atomic mass			the reference	
	unit			state.	
	Astronomical			It is the average	
عاد:ما ا	unit			distance between	1 ua 1.495.978.706.91 x 10 ¹¹ m
Height	Astronomical	ua	ua	the Earth and the	$\pm 0.00000000030 \times 10^{11}\text{m}$
	unit			Sun.	

Table (11)

Table of Conversion Factors for Some Measurement Units that have been

Cancelled

NIo	Prohibited unit	Measurement	Alternative	Conversion Factor
No.	Prombiled unit	Field	measure unit	Conversion Factor
			litre	1 Gallon - 4.546 litre
.1	gallon	All fields	litre	1 Gallott - 4.340 little
. '	gallon	All fields	Cubic metre	1 Gallon - 4.546 X 10 ⁻³ m ³
			cubic metre	1 Gallott - 4.346 \(\lambda\) 10 \(^{1}\) III
.2	Foot	All fields	Metre	1 Foot = 0.304800 m
.2	.2 F00t	All fields	metre	11001 – 0.304000 111
.3	war/yard	All fields	Metre	1 War (Yard) - 0.9144 m
.3	wai/yaiu	All fields	metre	1 Wai (1aiu) - 0.5144 iii
			Gram	1 TOLA = 11.6638 g (Solid)
.4	Tola	All fields	gram	1 10L/(= 11.0030 g (30lld)
	I UIA		millilitre	1 TOLA = 11.6638 ml (Liquid)
			millilitre	TTOLA - TT.0036 IIII (Liquid)