Cabinet Resolution No. (85) of 2023

Concerning the Technical Regulations for Legal Measurements Units

The Cabinet,

- Having reviewed the Constitution; and
- Based on the proposal submitted by the Minister of Industry and Advanced Technology, and the Cabinet's approval,

Has resolved as follows:

Article (1)

Definitions

In application of the provisions of this Resolution, the words and expressions set forth herein shall bear the meanings ascribed to them, unless the context otherwise requires:

Ministry	:	Ministry of Industry and Advanced Technology.
Minister	:	Minister of Industry and Advanced Technology.
Competent	:	The federal and local government authority in the State that falls
Authority		within its jurisdiction to implement any of the provisions of this
		Resolution.
Legal	:	Units of measurement that shall be used exclusively in the
Measurement		specific fields according to the legislation in force in the state.
Units		
Prefix	:	A letter or group of letters before a word that partly indicates
		meaning (such as Milli, kilo, mega).
Legal	:	A measuring instrument used in trading, or which, in some form
Measurement		or other, affects the health and safety of individuals or the
Instrument		environment as a result of not being given correct indicators.

General	:	An intergovernmental organisation established in 1875 under
Conference on		the terms of the Metre Convention, through which member
Weights and		states work together on matters relating to metrology and
Measures		measurement standards. It consists of delegates from the
		governments of member states and observers from affiliated
		countries.
International	:	An interconnected system of units based on the International
System of Units		System of Quantities, the names, symbols, and prefixes of its
(SI)		units, as well as rules for use thereof, have been approved by the
		General Conference on Weights and Measures.
Base Units	:	The legal measurement units approved by the General
		Conference on Weights and Measures, as units that are
		dimensionally independent of each other.
Derived Units	:	Legal measurement units established as products of powers of
		base units, in accordance with the algebraic relationships

Article (2)

governing the associated quantities.

Scope of Application

- 1. The provisions of this resolution shall apply to legal units of measurement, symbols and prefixes thereof used in the following areas:
 - a. Legal Measurement Instruments.
 - b. Pre-packaged packages.
 - c. Trading.
 - d. Legal inspections and measurements.
 - e. Health, Safety and Environment Fields.
 - f. Advertisements, publications, books, magazines, and all advertising and media means.
 - g. Contracts and official documents issued by public and private official entities.

- 2. The following areas shall be exempted from the use of legal measurement units, symbols and prefixes thereof:
 - a. Conversion tables between different measurement units.
 - b. Special uses related to military and security fields.
 - c. Documents, contracts and properties in which international treaties and agreements binding on the State require the use of other measurement units.
 - d. Goods and services related to export or documents and publications intended for use in other countries use different measurement units.
 - e. Areas of scientific research.
 - f. Any measurement units referred to for historical purposes.
 - g. Special uses that require the use of non-legal measurement units (such as tire pressure gauges in psi and aviation inch length gauges) provided that they shall be determined with the legal equivalents thereof.

Article (3)

Responsibilities

The Ministry shall bear responsibility for implementing and supervising the requirements of this resolution in collaboration with the authorities authorised to carry out metrological control within the State, as well as with the competent authorities, scientific institutes, and universities. For this purpose, it may take the necessary decisions and procedures to ensure implementation thereof.

Article (4)

Legal Measurement Units

- 1. The legal measurement units adopted by the state and prefixes thereof consist of the following:
 - a. The base units shown in Table (1) attached hereto.

- b. Derived units, divided into the following groups:
 - Derived measurement units based on the use of only the base units shown in Table (2) attached hereto.
 - 2. The measurement units with special names and symbols shown in Table (3) attached hereto.
 - 3. Derived measurement units whose names and symbols contain derived units with special names and symbols shown in Table (4) attached hereto.
 - 4. The non-dimensional derived measurement units shown in Table (5) attached hereto.
 - 5. Prefixes of measurement units shown in Table (6) attached hereto.
- 2. The legal measurement units accepted for use outside the International System of Units are as follows:
 - a. The measurement units accepted due to the frequent use thereof, shown in Table(7) attached hereto.
 - b. Acceptable measurement units, which are not permitted to be used outside the topics specified therefor, as shown in Table (8) attached hereto.
 - c. The currently accepted units of measurement outside the SI within specific topics, the values of which have been determined by practical experience, and which shall be discontinued in the event of international adoption of alternative units for the fields included and shown in Table (9) attached hereto.
- 3. The measurement units listed in Table (10) attached hereto shall be discontinued, and any person who uses them shall be subject to the penalties prescribed in Article (6) of this resolution.
- 4. The use and notation of prefixes, symbols, quantities, units, and measurement results shall conform to the recommendations of the General Conference on Weights and Measures, as well as the mandatory technical regulations issued in this regard. They shall be presented in the correct form, size, and location, ensuring accuracy and preventing any errors or misleading representations

 In educational contexts, reference may be made to certain measurement units outside the SI, whether historical or currently in use, for the purpose of understanding the evolution of the science of measurement.

Article (5)

Local Measurement Units

- These are measurement units not recognised internationally, whose use is restricted to within the State for resolving local disputes, if they arise. Use thereof shall be exclusively verbal, and such units may possess different values and symbols outside the State.
- 2. It is prohibited to use the local units of measurement specified in Table (11) attached hereto. The units of measurement referred to shall be replaced according to the conversion factors mentioned in the same table.

Article (6)

General Provisions

- 1. To safeguard the public interest, the Ministry may take such actions as it deems appropriate in cases that cannot be addressed under the provisions of this Resolution, or in the event of a dispute regarding its interpretation or application. The Ministry may rely on prevailing international practices in this domain as a basis for the resolutions thereof.
- 2. The Minister shall have the authority to add or cancel any legal measurement units or to amend any of the tables attached hereto in response to scientific or technical developments, whether global or local, as required by the public interest.
- 3. In the event of a violation of the provisions of this resolution, the administrative penalties stipulated in Cabinet Resolution No. (64) of 2022 regarding the National Measurement System shall be applied.

Article (7)

Executive Resolutions

The Minister, in coordination with the competent authority, shall issue the Resolutions necessary to apply the provisions of this Resolution.

Article (8)

Repeals

Any provision that violates or contradicts the provisions of this Resolution shall be repealed.

Article (9)

Publication and Entry into Force

This Resolution shall be published in the Official Gazette and shall be enforced after (30) thirty days as of the date of its publication.

Mohammed Bin Rashid Al Maktoum

Prime Minister

Issued by Us: Date: 02 Muharram 1445 A.H. Corresponding to: 20 July 2023 AD

Quantity: time	Quantity: time	
Unit: The second	Unit: The second	
Symbol: s	Symbol: s	
It is defined by taking the fixed numerical	The second is defined by taking a	
value of the caesium frequency $\Delta u_{ ext{Cs},}$ the	fixed numerical value of 9 192 631	
unperturbed ground-state hyperfine	770 Hz. The unperturbed ground-	
transition frequency of the caesium 133	state hyperfine transition frequency of	
atom, to be 9 192 631 770 when expressed	the caesium 133 atom $\Delta u_{{}_{Cs}}$ where	
in the unit Hz, which is equal to s ⁻¹ .	$Hz = s^{-1}$.	
This definition implies the exact relation	This definition implies the following	
	exact relation	
$\Delta v_{cs,}$ = 9 192 631 770 Hz.	$\Delta v_{Cs,}$ = 9 192 631 770 Hz.	
Inverting this relation gives an expression	Inverting this relation gives an	
for the unit second in terms of the defining	expression for the unit second in	
constant Δv_{Cs} :	terms of the defining constant $Cs_{\Delta \nu_{i}}$	
1 Hz =	AvCs	
9 192	631 770	
Or	or	
9 192	631 770	
1 Hz =	lvCs	
The effect of this definition is that the	The effect of this definition is that the	
second is equal to the duration of 9 192	second is equal to the duration of 9	
631 770 periods of the radiation	192 631 770 periods of the radiation	
corresponding to the transition between	corresponding to the transition	
the two hyperfine levels of the	between the two hyperfine levels of	

Schedule (1)

SI Base Units

Cabinet Resolution of 2023 Concerning the Technical Regulations for Legal Measurements Units

unperturbed ground state of the $^{133}\mathrm{Cs}$

atom.

the unperturbed ground state of the

133 Cs atom.

The reference to an unperturbed atom is intended to make it clear that the definition of the SI second is based on an isolated caesium atom that is unperturbed by any external field, such as ambient black-body radiation.

The reference to an unperturbed atom is intended to make it clear that the definition of the SI second is based on an isolated caesium atom that is unperturbed by any external field, such as ambient black-body radiation.

Quantity: length	Quantity: length		
Unit: The metre	Unit: The metre		
Symbol: M	Symbol: M		
It is defined by taking the fixed numerical	It is defined by taking the fixed		
value of the speed of light in vacuum <i>c</i> to	numerical value of the speed of light		
be 299 792 458 when expressed in the unit	in vacuum c to be 299 792 458 (299		
m s ⁻¹ , where the second is defined in terms	792 458 m s ⁻¹) where the second is		
of $\Delta \nu_{cs}$	defined in terms of $\Delta u_{\ Cs}$		
This definition implies the exact relation	This definition implies the exact		
	relation		
c=299 792 458 m s ⁻¹	c=299 792 458 m s ⁻¹		
Inverting this relation gives an expression	Inverting this relation gives an		
for the unit second in terms of the defining	expression for the unit metre in terms		
constant $\Delta \nu$ Cs:	of the defining constants c and Δv CS:		
$1 \text{ m} = \left(\frac{C}{S}\right)^{S}$			

$$1 \text{ m} = \left(\frac{C}{299\ 792\ 458}\right)^{S}$$

$$=\frac{9\,192\,631\,770}{299\,792\,458}\frac{C}{\Delta\nu\mathrm{Cs}}$$

$$\approx 30.633 \ 319 \frac{C}{\Delta \nu Cs}$$

The effect of this definition is that one metre is the length of the path travelled by light in vacuum during a time interval with duration of 1/299 792 458 of a second. The effect of this definition is that one metre is the length of the path travelled by light in vacuum during a time interval with duration of 1/299 792 458 of a second.

Quantity: Mass	Quantity: Mass
Unit: The kilogram	Unit: The kilogram
Symbol: kg	Symbol: kg

It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10⁻³⁴ when expressed in the unit J s, which is equal to kg m² s⁻¹, where the metre and the second are defined in terms of c and Δv_{CS}

This definition implies the exact relation

h= 6.626 070 15 × 10⁻³⁴ kg m² s⁻¹ Inverting this relation gives an exact expression for the kilogram in terms of the three defining constants h, $\Delta \nu_{cs}$ and c It is defined by taking the fixed numerical value of the Planck constant h to be (6.626 070 15 × 10⁻³⁴), where (J s = kg m² s⁻¹), where the metre and the second are defined in terms of c and $\Delta \nu_{Cs}$

This definition implies the exact relation

h= 6.626 070 15 × 10⁻³⁴ kg m² s⁻¹ Inverting this relation gives an expression for the unit kilograms in terms of the defining constants h, and $\Delta \nu$ CS and c

$$1 \,\mathrm{Kg} = \left(\frac{H}{6.626\ 070\ 15 \times 10^{-34}}\right) m.^{-2} \,\mathrm{S}$$

Which is equal to

Which is equal to

$$1 \text{ Kg} = \frac{(299792458)^2}{(6.62607015 \times 10^{-34})(9192631770)} \frac{h \,\Delta v_{cs}}{C^2}$$
$$\approx 1.4755214 \times 10^{40} \frac{h \,\Delta v_{cs}}{C^2}$$

The effect of this definition is to define the unit kg m² s⁻¹ (the unit of both the physical quantities action and angular momentum). Together with the definitions of the second and the metre this leads to a definition of the unit of mass expressed in terms of the Planck constant h. The effect of this definition is to define the unit

(J s = kg m² s⁻¹) (The unit of physical quantities and angular momentum), which, together with the definitions of the second and the metre this leads to a definition of the unit of mass expressed in terms of the Planck constant h.

Quantity: electric current	Quantity: electric current
Unit: The ampere	Unit: The ampere
Symbol: A	Symbol: A

It is defined by taking the fixed numerical value of the elementary charge e to be 1.602 176 634 × 10⁻¹⁹ when expressed in the unit C, which is equal to A s, where the second is defined in terms of $\Delta \nu_{Cs}$ This definition implies the exact relation

It is defined by taking the fixed numerical value of the elementary charge e to be (1.602 176 634 × 10⁻¹⁹) c. where C=A S, where the second is defined in terms of Δv_{Cs} This definition implies the exact relation e=1.602 176 634 x 10⁻¹⁹ A s Inverting this relation gives an exact expression for the unit ampere in terms of the defining constants e and Δv_{Cs} :

e=1.602 176 634 x 10^{-19} A s Inverting this relation gives an expression for the unit ampere in terms of the defining constants e and Δv CS:

 s^{-1}

 $1 A = \left(\frac{e}{1.602\ 176\ 634\ \times\ 10^{-19}}\right)$ which is equal to

Which is equal to

$$1 A = \frac{1}{(9\ 192\ 631\ 770)(1.602\ 176\ 634\ \times 10^{-19})} \Delta v_{cs} e$$

$$\approx 6.789.687 \times 10^8 \Delta v_{cs} e$$

The effect of this definition is that one ampere is the electric current corresponding to the flow of $1/(1.602\ 176\ 634\ \times\ 10^{-19})$ elementary charges per second.

The effect of this definition is that one ampere is the electric current corresponding to the flow of 1/(1.602) $176\ 634 \times 10^{-19}$) elementary charges per second.

Quantity: thermodynamic temperature	Quantity: thermodynamic temperature
Unit: The kelvin	Unit: The kelvin
Symbol: K	Symbol: K
It is defined by taking the fixed numerical	It is defined by taking the fixed
value of the Boltzmann constant k to be	numerical value of the Boltzmann
1.380 649 \times ¹⁰⁻²³ when expressed in the	constant k to be 1.380649×10^{-23} ,
unit J K ⁻¹ , which is equal to kg m ² s ⁻² K ⁻¹ ,	where J K ⁻¹ = Kg m ² s ⁻² K ⁻¹ , where the

where the kilogram, metre and second are defined in terms of h, c and Δv Cs This definition implies the exact relation kilogram, metre and second are defined in terms of h, c and Δv_{Cs} This definition implies the exact relation

Inverting this relation gives an exact expression for the kelvin in terms of the defining constants k, h and $\Delta \nu_{Cs}$

 $k=1.380~649 \times 10^{-23} \text{ kg m}^2 \text{ s}^{-2} \text{ K}^{-1}$

k=1.380 649 \times 10⁻²³ kg m² s⁻² K⁻¹ Inverting this relation gives an expression for the unit kelvin in terms of the defining constants k, h and

$$1 K = \left(\frac{1.380 \ 649 \ \times \ 10^{-23}}{k}\right) kg \ m^2 s^{-2}$$
Which is equal to

 $\Delta v CS$:

Which is equal to

$$1 K = \frac{1.380\ 649\ \times\ 10^{-23}}{(6.626\ 070\ 15\ \times\ 10^{-34})(9\ 192\ 631\ 770)} \frac{\Delta v_{cs} h}{k}$$
$$\approx 2.266\ 6653\ \frac{\Delta v_{cs} h}{k}$$

The effect of this definition is that one kelvin is equal to the change of thermodynamic temperature that results in a change of thermal energy kt by 1.380 649 $\times 10^{-23}$ j.

The effect of this definition is that one kelvin is equal to the change of thermodynamic temperature that results in a change of thermal energy kt by 1.380 649 \times 10⁻²³ Quantity: amount of substance Unit: The mole Symbol: mol

One mole contains exactly 6.02 214 076 \times 10²³ elementary entities. This number is the fixed numerical value of the Avogadro constant, N_A, when expressed in the unit mol⁻¹ and is called the Avogadro number. The amount of substance, symbol n, of a system is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles.

This definition implies the exact relation

 $N_A = 6.022 \ 140 \ 76 \times 10^{23} \ mol^{-1}$ Inverting this relation gives an exact expression for the mole in terms of the defining constant N_A : Quantity: amount of substance Unit: The mole Symbol: mol

One mole contains exactly (6.02 214 076 X 10²³) elementary entities, this number is the fixed numerical value of the Avogadro constant, N_A, when expressed in the unit mol⁻¹ (the inverse of the mole), and is called the Avogadro number. The amount of substance, symbol n, of a system is a measure of the number of specified elementary entities. is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles. This definition implies the exact relation $N_A = 6.022 \ 140 \ 76 \times 10^{23} \ mol^{-1}$

Inverting this relation gives an exact expression for the mole in terms of the defining constant N_A

$$1 mol = \frac{(6.022 \ 140 \ 76 \ \times \ 10^{23})}{N_A}$$

The effect of this definition is that the mole is the amount of substance of a system that contains 6.02 214 076 \times 10²³ elementary entities.

The effect of this definition is that the mole is the amount of substance of a system that contains (6.02 214 076 X 10^{23}) elementary entities.

Quantity: luminous intensity	Quantity: luminous intensity
Unit: The candela	Unit: The candela
Symbol: cd	Symbol: cd
is the SI unit of luminous intensity in a	It is defined by taking the fixed
given direction. It is defined by taking the	numerical value of the luminous
fixed numerical value of the luminous	efficacy (K _{cd}) of (683 lm W ⁻¹) for a
efficacy of monochromatic radiation of	monochromatic beam with a
frequency 540 \times 10 ¹² Hz, K _{cd} , to be 683	frequency 540 x 10 ¹² Hz, where
when expressed in the unit Im W ⁻¹ , which	Im W ⁻¹ =cd sr W ¹ =cd sr kg 1 m 2 s ³
is equal to cd sr W ⁻¹ , or cd sr kg 1 m 2 s ³ ,	
where the kilogram, metre and second are	the kilogram, metre and second are
defined in terms of h, cand Δu_{Cs}	defined in terms of -h, c and $\Delta u_{ ext{Cs}}$
This definition implies the exact relation	This definition implies the exact
	relation
$K_{cd} = 683 \text{ cd sr kg}^{1} \text{m}^{2} \text{s}^{3}$	$K_{cd} = 683 \text{ cd sr kg}^{1} \text{m}^{2} \text{s}^{3}$
for monochromatic radiation of frequency	for monochromatic radiation of
$\nu = 540 \times 10^{12}$ Hz. Inverting this relation	frequency
gives an exact expression for the candela in	$\nu = 540 \times 10^{12} \text{ Hz}$

terms of the defining constants K_{cd} hand $\Delta\nu_{Cs}$

Inverting this relation gives an exact expression for the candela in terms of the defining constants K_{cd} and h and

 $\Delta \nu_{cs}$

$$1 \ cd = \left(\frac{k_{cd}}{683}\right) kg \ m^2 s^{-3} sr^{-1}$$

Which is equal to

Which is equal to

1 *cd*

$$=\frac{1}{(6.626\ 070\ 15\ \times\ 10^{-34})(9\ 192\ 631\ 770)^2\ 683}(\Delta\nu_{cs})^2h\ K_{cd}$$

$\approx 2.614\,8305 \times 10^{10} (\Delta v_{cs})^2 h K_{cd}$

The effect of this definition is that one candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} Hz and has a radiant intensity in that direction of (1/683) W sr⁻¹.

The effect of this definition is that one candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540 X 10¹² and has a radiant intensity in that direction of (1/683) W sr⁻¹

Table (2)

Examples of Some Derived Units Based on the Use of Base Units Only

Symbol		Unit		Quantity	
m ²	m ²	Square metre	Square metre	Area	Area
m ³	m ³	Cubic metre	Cubic meters	Volume	Volume
rad/a	rad/a	Radian per	Radian per	Angular	Angular
rdu/s	rdu/s	second	second	velocity	velocity
		Radian per	Radian per	Angular	Angular
rad/s ²	rad/s ²	second	second	Aliguia	Aliguia
		squared	squared	acceleration	acceleration
	/	Metre per	Metre per	Valasin	Valasin
111/5	111/5	second	second	velocity	Velocity
		meter per	Metre per		
m/s ²	m/s ²	second	second	Acceleration	Acceleration
		squared	squared		
ka/m	ka/m	Kilogram per	Kilogram per	Lineic mass,	Lineic mass,
Kg/III	Kg/III	metre	metre	linear density	linear density
		Kilogram per	Kilogram per	Areicmass	Areic mass,
kg/m²	kg/m²			surface density	surface
		squaremetre	square metre	surface defisity	density
la /m^3	kg/m ³	Kilogram per	Kilogram per	Density (mass	Density (mass
Kg/III		cubic metre	cubic metre	density)	density)
m²/s	m²/s	Metre	Metro squared	Kinematic	Kinematic
		squared per	per cocord	Niecosity	
		second	per second	viscosity	viscosity

m ³ /s m ³ /s	Cubic metre	Cubic metre	Volume flow	Volume flow	
	m [*] /S	per second	per second	rate	rate
ka/s	kg/s	Kilogram per	Kilogram per	Mass flow rate	Mass flow rate
Kg/ 5		second	second		
Δ	Δ	amporo	ampere	Magnetomotive	Magnetomotive
A	A	ampere		force	force
A/m	A/m A/m	Ampere per	Ampere per	Magnetic field	Magnetic field
		metre	metre	strength	strength
Cd/m ²	cd/m ²	Candela per	Candela per	Luminanco	Luminanco
Cu/III		square metre	square metre	Lummance	Lummance
1/m	1/m	1 per metre	1 per meter	Wave number	Wave number

Table (3)

1	Quantity: Plane angle
	Unit: Radian
	Unit Symbol: rad
	A radian is the unit of plane angle, defined as the angle between two radii of a
	circle that intersect an arc whose length is equal to the radius of the circle.
2	Quantity: Solid angle
	Unit: Steradian
	Unit symbol: sr
	A steradian is the unit of solid angle, defined as the angle with its vertex at the
	centre of a sphere that intercepts an area on the surface of the sphere equal to
	that of a square whose side length is equal to the sphere radius.
3	Quantity: Frequency
	Unit: hertz
	Unit symbol: Hz
	Hertz is a unit of frequency, defined as the number of cycles of a periodic
	phenomenon occurring per second.
	Frequency is the number of cycles of a periodic phenomenon occurring in one
	second.
4	Quantity: Force
	Unit: Newton
	Unit Symbol: N
	A Newton is the force that, when applied to a stationary mass of 1 kilogram,
	causes it to accelerate at a rate of 1 metre per second squared.

Derived Units with Special Names and Symbols

5	Quantity: Pressure, stress
	Unit: Pascal
	Unit symbol: Pa
	A Pascal is a unit of pressure defined as the amount of uniform pressure that,
	when applied to a flat surface of 1 square meter, exerts a total force of 1
	Newton perpendicular to that surface.
	It is also the uniform stress that, when applied to a flat surface with an area of 1
	square meter, results in a total force of 1 Newton acting on that surface.
6	Quantity: Work, energy, quantity of heat
	Unit: joule
	Unit Symbol: J (1)
	A Joule is the work done when a force of 1 Newton moves an object a distance
	of 1 meter in the direction of the force.
7	Quantity: Energy flow rate, heat flow rate power
	Unit: watt
	Unit Symbol: W
	A Watt is the power that represents the rate at which 1 Joule of energy is
	produced or consumed per second.
8	Quantity: temperature, interval of temperature
	Unit: Degree Celsius
	Unit Symbol: °C (°)
	In addition to the thermodynamic temperature (K) expressed in Kelvin, the
	Celsius temperature (D) is also used, which is defined by the equation: $D = KH$ -
	273.15
1	
	The unit "degree Celsius" is numerically equivalent to the unit "kelvin";

	Temperature differences or ranges can be expressed either in degrees Celsius or
	in kelvins.
0	
9	Quantity: Quantity of electricity, electric charge
	Unit: coulomb
	Unit Symbol: C
	A Coulomb is the quantity of electric charge transferred in 1 second by a
	constant electric current of 1 Ampere.
10	Quantity: Electric potential, electromotive force
	Unit: volt
	Unit Symbol: V
	A Volt is the electrical potential difference between two points in a conducting
	wire carrying a constant current of 1 Ampere, where the power consumed
	between these points is 1 Watt.
11	Quantity: Electric resistance
	Unit: ohm
	Unit Symbol: Ω
	An Ohm is the electrical resistance between two points of a conductor when a
	constant current of 1 Ampere flows through it, and the electrical potential
	difference between these points is 1 Volt, provided that the conductor is not
	connected to any source of electromotive force.

12	Quantity: Conductance
	Unit: siemens
	Unit Symbol: S
	A Siemens is the unit of electrical conductivity of a conductor that has an
	electrical resistance of 1 Ohm.
	(Electrical conductivity is the inverse of electrical resistance.)
13	Quantity: Electric capacitance
	Unit: farad
	Unit Symbol: F
	A Farad is the capacitance of an electrical capacitor that, when charged with an
	electric charge of 1 Coulomb, exhibits an electrical potential difference of 1 Volt
	between its plates.
14	Quantity: inductance
	Unit: Henry
	Unit Symbol: H
	A Henry is the unit of electrical inductance of a closed circuit that generates an
	electromotive force of 1 Volt when the electric current flowing through it
	changes at a constant rate of 1 Ampere per second.
15	Quantity: Magnetic flux
	Unit: weber
	Unit Symbol: Wb
	A Weber is the unit of magnetic flux that, when passing through a single-turn
	electric circuit, generates an electromotive force of 1 volt as the flux decreases
	to zero at a constant rate over one second.

16	Quantity: Magnetic flux density, magnetic induction
	Unit: Tesla
	Unit Symbol: T (1)
	A Tesla is the unit of magnetic flux density/effect produced in an area of 1
	square metre by a uniform magnetic flux of 1 Weber perpendicular to the area.
17	Quantity: Catalytic activity
	Unit: katal
	Symbol: kat
	1. It is the catalytic activity that causes a reaction rate change of mole of
	reactant per second.
	2. When using the katal unit, it is recommended that the measured quantity be
	specified by linking it to the measurement method used to determine the
	reagent reaction.
	Note:
	According to Resolution No. 12 of the XXI General Conference on Weights and
	Measures in 1999, this derived unit can be used particularly in the fields of
	biochemistry and medical sciences.
18	Quantity: Luminous flux
	Unit: lumen
	Unit Symbol: Im
	A lumen is a measurement unit for luminous flux, defined as the amount of
	light emitted through a solid angle of 1 steradian from a light source with a
	uniform and precise radiation intensity of 1 candela.

19	Quantity: Illuminance
	Unit: lux
	Unit Symbol: lx
	Lux is a measurement unit for the illuminance of a surface, defined as the
	amount of luminous flux of 1 lumen uniformly distributed over an area of 1
	square metre
20	Quantity: Activity of a radioactive source
	Unit: Becquerel
	Unit Symbol: Bq
	A becquerel is a measurement unit for the activity of a radioactive source,
	representing one spontaneous nuclear transformation, disintegration, or
	change in the number of radionuclides in a given energy state per second.
	The activity of a radioactive source is measured by the number of spontaneous
	nuclear transformations or decays, or the change in the number of
	radionuclides in a given energy state, occurring within one second.
21	Quantity: Absorbed dose, kerma
	Unit: gray
	Unit Symbol: Gy
	A Gray is a unit of measurement for the absorbed dose of ionising radiation,
	defined as the amount of energy of 1 Joule deposited in a substance with a
	mass of 1 kilogram.
22	Quantity: Dose equivalent
	Unit: sievert
	Unit Symbol: Sv
	A Sievert is a unit of measurement for the dose equivalent in biological tissue
	with a mass of 1 kilogram, which receives an energy of 1 Joule from ionising
	radiation with a radiation impact factor of 1, under constant radiation flux.

In other words, a Sievert quantifies the biological damage caused to tissue due
to exposure to ionising radiation and is equivalent to one Joule per kilogram.
Note:
The dose equivalent is defined as the product of the absorbed dose at a specific
point in biological tissue and the radiation effect factor at that point.

Table (4)

Examples of Derived Units Whose Names and Symbols Contain Derived

Symbol		Unit		Quantity		No.	
Nm	Nm	Newton	Newton	Moment of	Moment of	1	
18.111	18.111	metre	metre	force	force	-1	
Dac	Dac	Pascal	Pascal	Dynamic	Dynamic	7	
F d.5	F d.5	Second	second	viscosity	viscosity	-2	
I/K	I/K	Joule per	Joule per	Entropy	Entropy	r	
J/ K	J/K	kelvin	kelvin	спаору	спаору	-3	
	l∕(kg∙K)	Joule per	Joule per	Spacific boat	Spacific boat	-4	
l/(kg · K)		kilogram	kilogram	specific field	specific fieat		
		kelvin	kelvin	capacity	сарасну		
M/(m K)	W/(m.K)	Watt per	Watt per	Thermal	Thermal	Ц	
VV/(III.IX)		metre kelvin	metre kelvin	conductivity	conductivity	-5	
)./m	v/m	Volt per	Volt per	Electric field	Electric field	G	
V/III		meter	metre	strength	strength	-0	
\\//sr	\\/cr	Watt per	Watt per	Radiant	Radiant		
VV/SI	VV/ 31	steradian	steradian	intensity	intensity		
c/ka	c/ka	Coulomb	Coulomb	Exposure	Exposure	-8	
с/ кg	C/ Kg	per kilogram	per kilogram	Laposure	LAPOSULE	-0	

Units with Special Names and Symbols

Table (5)

No.	Unit				
-1	Refractive index	Refractive index			
-2	Relative permeability	Relative permeability			
-3	Friction factor	Friction factor			
-4	Prandtl number	Prandtl number			

Examples of Some Dimensionless Derived Units

Since the unit of dimensionless derived quantities is simply 1, it is not expressed explicitly. However, some of these dimensionless units have special names and symbols to avoid confusion with other derived units. Examples include the radian (rad), the steradian (sr), and the neper (Np).

Table (6)

SI Prefixes

Drafix Sumbal		Drofix Name		Multiplication	<u>)/-1</u> -
Prefix 3	symbol	Prefix	Name	Factor	value
0	0	quatta	quatta	1030	1000 000 000 000 000 000 000 000 000
Q	Q	queita	quetta	10	000
R	R	ronna	ronna	10 ²⁷	1 000 000 000 000 000 000 000 000 000
Y	Y	Yotta	Yotta	10 ²⁴	1 000 000 000 000 000 000 000 000 000
Z	Z	Zeta	Zeta	10 ²¹	1 000 000 000 000 000 000 000 000
E	E	Exa	Exa	10 ¹⁸	1000 000 000 000 000 000
Р	Р	Peta	Peta	10 ¹⁵	100000000 000 000
т	Т	Tera	Tera	10 ¹²	100000000 000
G	G	Giga	Giga	10 ⁹	100000000
м	М	mega	mega	10 ⁶	1000 000
К	К	Kilo	Kilo	10 ³	1000
Н	Н	hecto	hecto	10 ²	100
da	da	deca	deca	10 ¹	10
D	D	deci	deci	10 ¹	0.1
с	С	centi	centi	10 ⁻²	0.01
м	М	milli	milli	10 ⁻³	0.001
mc	μ	micro	micro	10 ⁻⁶	0.000 001
n	n	nano	nano	10 ⁻⁹	0.000 000 001
Р	р	Pico	pico	10 ⁻¹²	0.000 000 000 001
f	f	femto	femto	10 ⁻¹⁵	0.000 000 000 000 001
a	a	atto	atto	10 ⁻¹⁸	0.000 000 000 000 000 001
z	Z	zepto	Zepto	10 ⁻²¹	0.000 000 000 000 000 000 001

у	у	Yocto	Yocto	10 ⁻²⁴	0.000 000 000 000 000 000 000 001
r	R	ronto	Ronto	10 ⁻²⁷	0.000 000 000 000 000 000 000 000 000 0
q	Q	quecto	Quecto	10 ⁻³⁰	0.000 000 000 000 000 000 000 000 000

Table (7)

Quantity	Unit		Symbol		Value in international units
	Minute	minute	min	Min	1 min = 60s
Time	hour	hour	Н	Н	1h = 60 min = 3600 s
	One day	day	d	d	1d = 24 h
	Degree	Degree (1)	0	0	1° = (π/180) rad
	Minute	minute	1	1	1'= (1/60)'= (π/10 800) rad
Plane Angle	Second	Second	"	"	1" - (1/60)" = (π/648 000) rad
	gon	gon		gon	1° = (π/200) rad
	(degree)				
Capacity	litre	litre (²)	L	L,İ	$1 l = 1 dm^3 = 10^{-3} m^3$
Mass	Metric	ton (³)	Ton	t	$1t = 10^3 \text{ kg}$
	ton				
Pressure	bar	bar	bar	bar	1 bar = 10 ⁵ Pa
Algorithmic	Nipper				
quantity	(7) and	neper	Np	Np	1Np = ln e = 1
	(6)				
	(8) bel	bel	В	В	1 B = (1/2) In 10 (Np) = Ig 10 B

Acceptable Measurement Units Due to their Frequent Use

- 1. Standard no. 15031 recommends dividing the degree using decimals rather than using minutes and seconds.
- 2. This unit and symbol (1) were adopted by the CIPM in 1879. The alternative symbol (L) was adopted by the 16th General Conference on Weights and Measures in 1979, to remove confusion between the letter L and the number 1.
- 3. In some English-speaking countries this unit is called the "metric ton".
- 4. Example of algorithmic quantities: power level. power level

- 5. When using units of algorithmic quantities, the quantities being measured shall be stated.
- 6. Natural logarithms are used to obtain the algebraic value of quantities expressed in nipper.
- 7. The Niper unit is considered to be compatible with the SI but has not yet been adopted by the General Conference on Weights and Measures.
- 8. Decimal logarithm (logarithm to the base 10) is used to obtain the algebraic value of quantities expressed in Bel. The sub-multiple fraction decibel and the symbol (dB) are usually used.

Table (8)

Measurement Units Acceptable Outside the SI, which Shall Not be Used

No.	Measured Quantity	Unit	Symbol	Value in international units	Special-use
1.	Area	barn	В	$1 b = 10^{-28} m^2$	Atoms and Nuclear Physics
.2	Dynamic viscosity Dynamic viscosity	poise poise	Р	1 P = 0.1 Pa.s 1 cP = 10 ⁻³ Pa.s	
.3	Kinematic viscosity Kinematic viscosity	stokes stokes	St	1 St = $10^{-4} \text{ m}^2/\text{s}$ 1 cSt = $10^{-6} \text{ m}^2/\text{s}$	
.4	Radioactive source activity	curie curie	Ci (9)	1 Ci = 37 GBq = 3.7 X 10 ¹⁰ Bq	
5.	Absorbed dose of radiation	rad	rad (10)	1 rad = 0.01 Gy = 10 ⁻² Gy	Radiation
6.	Exposure to radiation Exposure	rdntgen	R (11)	1 R = 0.258 mC/Kg = 2.58 X 10 ⁻⁴ C/Kg	
7.	Pressure	Millimetre of mercury	mmHg	1 mmHg = 133.322 Pa	Only in specialised areas, such as:

Outside the Topics for Which They are Specified

This unit can be used with the prefixes for multiples and parts of units of measurement 12th CGPM, 1964

- 10. This unit can be used with the prefixes for multiples and parts of units of measurement 12th CGPM, 1964
- 11. This unit can be used with the prefixes for multiples and parts of units of measurement 12th CGPM, 1964

Low blood			Millimetre		
pressure			of mercury		
measurement					
	1 bar =100 kPa = 10 ⁵ Pa	bar (12)	bar		
	1 r = 2 πrad	r	cycle revolution	Plane Angle	8.
	1 diopter = 1 m ⁻¹	diopter	diopter	strength of optical systems strength of optical Systems	
Pearls and precious stones trading	1 carat = 2x10 ⁻⁴ kg = 200 mg	Ct (13)	Metric carat Metric carat	Mass	10.
Sea and air travel	1 nautical mile = 1852 m	n mile	Nautical mile nautical mile	Height	11.
Sea and air travel	1 nautical mile per hour - (1852/3600) m/s	knot	knot knot	Velocity	12.

- 12. This unit can be used with the prefixes for multiples and parts of units of measurement 12th CGPM, 1964
- 13. The symbol ct has not been adopted by either the General Conference on Weights and Measures or ISO but is widely used.

Table (9)

Currently Accepted Units of Measurement Outside the International

Special-use	Value in international units	Symbol	Unit	Measured Quantity	No., Item (14)
Magnetic wavelength	1 A = 0.1 nm= 10-10 m 1 in = 2.54 cm = 2.54 X 10 ⁻² m	A	angstrom angstrom (15) inch inch	length	8.1
Timber trading	$1 \text{ st} = 1 \text{ m}^3$	St	Stere	Volume	8.2
	1 q = 100 kg = 10 ² Kg 1 lb= 453.592 g	Q Lb	quintal pound pound	Mass	В.З
	1 Kgf = 1 Kp = 9.806 65 N	Kgf kp	Kilogram- force kilopond	Force	d«
	1 atm = 101.325 kPa = 1.013 25X10 ⁵ Pa	Atm	Standard atmospher		
	1 at = 98.0665 kPa = 0.980.665 X 10 ⁵ Pa	At	technical atmospher	Prossuro	Q 5
Medical treatment	1Torr = 101.325/760 Pa	Torr	Torr	Tressure	0.5
	1 mH2O 9.806.65 kPa = 9.806.656 X 10 ³ Pa	mH2o	Metre of water		
	1kgf.m = 1kp.m = 9.806.65 (16)	k.gfm	Kilogram Force-Meter		8.6

System of Units which Shall Be Discontinued

- 14. According to the document of the International Organisation for Legal Metrology OIML D2:1999:
- 15. According to reference (10), this unit can still be used.

			Kilogram force		
			metre		
			Kilopond		
			metre	Work, energy	
			Kilopond	and heat	
			metre		
		kp.m	calorie		
	1 cal = 4.186.8	Cal	calorie		
	1 motris horson over		metric		
	= 0.735.498.75 KW	watt	horsepower	Power	8.7
			(cheval-		
	- / JJ.490./ J VV		vapeur)		
	$1 \text{ sb}= 10 \text{ K}_{cd}/\text{m}^2 = 10^4 \text{ cd}/\text{m}^2$	sb	stilb	Luminance	8.8

Table (10)

Units of Measurement Accepted in Specific Subjects and their Values

Quantity	Unit	Symbol		Definition	Value in international units	
Energy	electronvolt electronvolt			It is the kinetic		
		eV	eV	energy that an		
				electron loses		
				when it travels		
				through a	1 oV - 1 602 177 22 V 10 ⁻¹⁹	
				vacuum and is	± 0.000 000 40 × 10-19	
				subjected to an	000 49 X 10 1	
				electrical		
				potential		
				difference of 1		
				Volt.		
Mass	Unified			It is a mass equal		
	atomic mass			to 1/12 of the		
	unit			mass of the free	$1 \text{ u} = 1.660.540.2 \times 10^{-27} \text{ kg}$	
	Unified	0	1.	carbon atom in	$\pm 0.0000010 \times 10^{-27}\mathrm{kg}$	
	atomic mass			the reference		
	unit			state.		
Height	Astronomical			It is the average		
	unit		distance between	1 ua 1.495.978.706.91 x 10 ¹¹ m		
	Astronomical	ua	ua	the Earth and the	$\pm \ 0.000\ 000\ 00030 \times 10^{11} \ m$	
	unit			Sun.		

Determined by Practical Experience

Table (11)

Table of Conversion Factors for Some Measurement Units that have been

Cancelled					
No.	Prohibited unit	Measurement	Alternative	Conversion Factor	
		Field	measure unit	CONVERSION FACIOF	
.1	gallon	All fields	litre	1 Callon 4546 litra	
			litre	1 Gallon - 4.540 litte	
			Cubic metre	1 Collon 4 546 V 10 ⁻³ m ³	
			cubic metre	1 Ganon - 4.340 × 10 m	
.2	Foot	All fields	Metre	1 Foot = 0.304800 m	
			metre	1100t – 0.30 4 000 m	
.3 war/yar	war/ward	/yard All fields	Metre	1 War (Vard) 0 0144 m	
	wai/yaiu		metre	1 Wai (Taiu) - 0.9144 III	
.4		All fields	Gram	1 TOLA - 11 6638 g (Solid)	
	Tola		gram	1 10L/1 = 11.0030 g (30lid)	
			millilitre	1 TOLA = 11 6638 ml (Liquid)	
			millilitre		